Potency of irritation by benzylidenemalononitriles in humans correlates with TRPA1 ion channel activation
نویسندگان
چکیده
We show that the physiological activity of solid aerosolized benzylidenemalononitriles (BMNs) including 'tear gas' (CS) in historic human volunteer trials correlates with activation of the human transient receptor potential ankyrin 1 ion channel (hTRPA1). This suggests that the irritation caused by the most potent of these compounds results from activation of this channel. We prepared 50 BMNs and measured their hTRPA1 agonist potencies. A mechanism of action consistent with their physiological activity, involving their dissolution in water on contaminated body surfaces, cell membrane penetration and reversible thiolation by a cysteine residue of hTRPA1, supported by data from nuclear magnetic resonance experiments with a model thiol, explains the structure-activity relationships. The correlation provides evidence that hTRPA1 is a receptor for irritants on nociceptive neurons involved in pain perception; thus, its activation in the eye, nose, mouth and skin would explain the symptoms of lachrymation, sneezing, coughing and stinging, respectively. The structure-activity results and the use of the BMNs as pharmacological tools in future by other researchers may contribute to a better understanding of the TRPA1 channel in humans (and other animals) and help facilitate the discovery of treatments for human diseases involving this receptor.
منابع مشابه
Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.
The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development...
متن کاملIdentification of a putative binding site critical for general anesthetic activation of TRPA1.
General anesthetics suppress CNS activity by modulating the function of membrane ion channels, in particular, by enhancing activity of GABAA receptors. In contrast, several volatile (isoflurane, desflurane) and i.v. (propofol) general anesthetics excite peripheral sensory nerves to cause pain and irritation upon administration. These noxious anesthetics activate transient receptor potential ank...
متن کاملMenthol derivative WS-12 selectively activates transient receptor potential melastatin-8 (TRPM8) ion channels.
Transient receptor potential melastatin-8 (TRPM8), a cationic ion channel is involved in detection of normal cooling-sensation in mammals. TRPM8 activation by cooling or chemical agonists have been shown to produce profound, mechanistically novel analgesia in chronic pain states such as neuropathic pain in rodents. Known TRPM8 agonists such as menthol and icilin have a relatively low potency an...
متن کاملThe exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1
Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. ...
متن کاملDirectionality of Temperature Activation in Mouse TRPA1 Ion Channel Can Be Inverted by Single-Point Mutations in Ankyrin Repeat Six
Several transient receptor potential (TRP) ion channels are activated with high sensitivity by either cold or hot temperatures. However, structures and mechanism that determine temperature directionality (cold versus heat) are not established. Here we screened 12,000 random mutant clones of the cold-activated mouse TRPA1 ion channel with a heat stimulus. We identified three single-point mutatio...
متن کامل